Workshop on Econometric Methods for Program Evaluation

Day 3: Designing randomized experiments

Institutions for Growth RPC

Kampala, Uganda 28–30 January, 2008

Outline

- 1 Statistical power of a randomized experiment
 - Why and how to conduct 'power calculations'
 - Imperfect compliance
 - Group-level randomization
 - Block randomization to improve power
- Practical options for randomized experiments
 - Oversubscription
 - Phase-in
 - Within-group randomization
 - Encouragement designs

What do we want to know before conducting an experiment?

- Experiments are costly, and we have a fixed budget. Is this going to be worth the money?
- Suppose we believe that the policy intervention we want to study does indeed have positive effects. How big a sample do we need in order to be likely to be able to detect a "reasonable" effect?
- 4 How do alternative designs for our experiment affect our likely ability to detect an effect?

Statistical power of an individual-level randomization

 Following Duflo et al. (2007), consider estimating the equation

$$Y_i = \alpha + \beta T + \varepsilon_i, \tag{1.1}$$

with perfect compliance. T takes on values of 0 and 1.

- Randomization ensures that T isn't correlated with ε_i (there's no endogeneity problem) \Rightarrow simple OLS regression ok.
- Assume the ε_i independently and identically distributed, variance σ^2 .
- ullet Then the variance of the OLS estimator, \hat{eta} , is given by

$$Var(\hat{\beta}) = \frac{1}{P(1-P)} \frac{\sigma^2}{N}$$
 (1.2)

where P the proportion of treated, and N sample size.

Statistical power, cont'd

What does this variance mean? Recall that we use the distribution of $\hat{\beta}$ to test for statistical significance. Under the 'null hypothesis' that $\beta=0$, $\hat{\beta}$ is distributed as

Figure: Testing the hypothesis that $\beta = 0$, at confidence_level_ α

Statistical power, cont'd

Suppose that we *know* that the true coefficient is, say, 2. Then if you run the experiment many times, $\hat{\beta}$ will actually be distributed as

Figure: Distribution of $\hat{\beta}$ when truth is $\beta = 2$

Statistical power, cont'd

So the question we want to ask is: If the truth is β , for a given sample size, what is the likelihood that we will estimate a $\hat{\beta}$ big enough to reject the hypothesis that $\beta=0$?

Figure: Probability of rejecting null hypothesis of no treatment effect

Question 1: For a given design, what is the smallest 'true' effect that one could expect to find?

• The last diagram illustrates that to achieve a power of κ at a confidence level of α , the *true* value of β must be at least

$$\beta > (t_{1-\kappa} + t_{\alpha/2})SE(\hat{\beta}) \tag{1.3}$$

The smallest possible value of β that satisfies this is called the **minimum detectable effect** (MDE).

• Taking the square root of our earlier equation (1.2) for $Var(\hat{\beta})$,

$$\beta_{MDE} = (t_{1-\kappa} + t_{\alpha/2}) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^2}{N}}$$
(1.4)

• So if we have data available to estimate σ^2 , we can plug in our design parameters to solve for the MDE.

Question 1, continued

Key points about the MDE,

$$\beta_{MDE} = (t_{1-\kappa} + t_{\alpha/2}) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^2}{N}} :$$
(1.5)

- The more households, *N*, that you have, the smaller the effect you can detect.
- The more *balanced* your sample is between treatment and control, the smaller the effect you can detect.
- The smaller the variance, σ^2 , of the error term, the smaller the effect you can detect. Note: if we have control variables, or even fixed effects (for example, dummies for regions), then what matters is the residual error after controlling for these observables.

Question 2: I believe the effect is β_0 . How big a survey do I need in order to have a $\kappa\%$ chance of finding this effect?

 We can answer this question, too, by rearranging the formula for the MDE to get:

$$\underline{N} = \frac{(t_{1-\kappa} + t_{\alpha/2})^2}{P(1-P)} \frac{\sigma^2}{\beta_0^2}$$
 (1.6)

- The higher the confidence level we want to use in testing for an effect (the smaller is α)...
- Or, the more sure we want to be that we will actually find this effect (the bigger is κ)...
- Or, the farther from 50/50 is the balance of treated and untreated households in our experiment...
- Or, the more unexplained variation in Y there is. . .
- ... the bigger the sample size we need.

Question 3: I have a fixed budget for the study. What is the best design to use?

- We've already seen that, for a given N, the MDE will be smallest when treatment and control groups are balanced.
- But in practice you might pay for the intervention and survey out of the same budget, B:

$$N(1-P)c_{survey} + NP(c_{survey} + c_{intervention}) \le B,$$
 (1.7)

where c_{survey} is the survey cost per household, and $c_{intervention}$ the cost of the intervention.

• Economists will recognize this as an optimization problem:

$$\min_{N,P} MDE, \quad \text{subject to (1.7)} \tag{1.8}$$

with solution
$$\frac{P}{1-P} = \sqrt{\frac{c_{survey}}{c_{survey} + c_{intervention}}}$$
.

Power calculations with imperfect compliance

- Yesterday's microfinance example illustrated an important problem: sometimes not everyone to whom it is offered takes up an intervention.
- In 'encouragement designs' more generally, we may have two variants on this problem:
 - It may be that only a fraction c of the treatment group (the 'compliers') actually receive the intervention;
 - or that a fraction d of those supposed to be in the control group (the 'defiers') receive the treatment anyway.

If we have prior information (an informed guess) about c and s, then just make a simple correction:

$$MDE = \frac{1}{c - s} (t_{1-\kappa} + t_{\alpha/2}) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^2}{N}}$$
 (1.9)

What is the unit of randomization?

- Sometimes the randomized allocation of a treatment occurs at the level of a group rather than an individual.
- For example, the treatment might occur at school, village, or district level. All individuals in this group uniformly either do or do not receive the treatment.
- This means we can't use group fixed effects at that level to control for unobservables: there is no within-group variation in the randomized treatment (or encouragement).

Power calculations under group randomization

- The power (or MDE) of the study in this case depends on how much of the variation in the outcome is explained by a common group-level shock, versus how much variation there is among individuals within the same group.
- Suppose the model we're estimating is

$$Y_{ij} = \alpha + \beta T + u_j + e_{ij} \tag{1.10}$$

with individuals denoted by i and groups by j. Thus the unobserved characteristic/shock u_j is shared by all individuals in this group.

• What matters is the relative variance of these two error terms $(\sigma_{\mu}^2 \text{ and } \sigma_{e}^2)$.

Hypothetical outcomes with/without treatment

Observed outcomes after randomization

Hypothetical outcomes with/without treatment

Observed outcomes after randomization

Power calculations for group randomization, cont'd

- Let $\rho=\frac{\sigma_u^2}{\sigma_u^2+\sigma_e^2}$, the fraction of the residual variation explained by the group-level effect.
- Then if we let J be the number of groups and n be the number of individuals per group, the MDE becomes

$$\beta_{MDE} = \frac{t_{1-\kappa} + t_{\alpha/2}}{\sqrt{P(1-P)J}} \sqrt{\rho + \frac{1-\rho}{n}} \sqrt{\sigma_u^2 + \sigma_e^2}$$
 (1.11)

• Intuitively, as the variation in the u_j goes down, then group membership doesn't matter for individuals' outcomes. The MDE becomes equivalent to our original version for $\rho=0$.

- Further design improvements are possible if we're particularly interested in the effect of the treatment on a particular subset of the population, say, women in rural villages.
- In this case, instead of doing a pure random sample, we can dedicate a fixed proportion of the sample
- In the extreme, you could think of your blocks as pairs of matched individuals—e.g., twins—and randomly allocate one of each twin to control and one to treatment.
 - A dummy variable for each sibling pair would then control for all unobserved characteristics
 - In the extreme, the only difference between the two would be attributable to the treatment...
- This approach is particularly valuable if you expect the effect of the treatment to be different across these groups.

Oversubscription designs

- Oversubscription designs use randomization as a rationing rule, to choose among a pool of eligible participants in a program.
- Strong case can be made on grounds of fairness in such designs.
- Ex: Angrist et al. assess the impact of a credit program by randomizing acceptances of applicants among a marginal group of prospective borrowers.

Phase-in as a route to randomization

- Randomized phase-in can be used when practical constraints mean a program will be introduced gradually over time.
- Randomly selected late recipients provide a control group for randomly selected early recipients. For example, 'Worms'.
- A few concerns:
 - Do people change their behavior in *anticipation* of a foreseen treatment? [How might this bias results?]
 - Are the effects of the treatment felt sufficiently quickly that they will occur before the late recipients are treated?

Not all phase-ins are created equal

- But note that not all phase-in is random. In spite of this, authors often employ such a 'pipeline comparison' method
- For example, Field (2005) looks at the issuance of property titles to slum residents in Lima. A snapshot halfway through implementation allows comparison of early with late recipients.
- But are late recipients a valid comparison group? Mitchell (2005); see also Conning and Deb (2007)
 - Early titled neighborhoods were done as a demonstration project by de Soto's ILD;
 - Early neighborhoods were more central and better off;
 - Late neighborhoods composed of refugees.

Might these effect credit, investment, and labor supply?

Within-group randomization

- Key idea in within-group randomization is to randomize within subgroups, while ensuring that each group gets something.
- For example, Banerjee et al. (2007) allocate a teaching assistant to all schools, but randomly choose whether to give this to the 2nd or 3rd grade.

Encouragement designs

- Encouragement designs can be applied when everyone has access to a program.
- Think of this as generating an instrument for participation in a program. Key is that participation should be higher for those randomly encouraged to participate (by financial or other means) from those without such added incentives.
- Examples
 - Duflo and Saez (2003) provide (via letter) a financial incentive for individuals to attend meetings about a particular pension plan; those receiving this incentive are more likely to attend a meeting and, ultimately, more likely to sign up.
- Encouragement designs are very flexible, and a way of introducing an exogenous source of variation in treatment when de jure access is universal.
- Key is to find an incentive that works...

References I

- PIFLO, E., R. GLENNERSTER, AND M. KREMER (2007): "Using Randomization in Development Economics Research: A Toolkit," Centre for Economic Policy Research, Discussion Paper No. 6059.
- interactions in retirement plan decisions: evidence from a randomzied experiment," *Quarterly Journal of Economics*, 118(3), 815–842.
- Field, E. (2005): "Property Rights and Investment in Urban Slums," Journal of the European Economic Association, 3(2/3), 279–290.
- TCHELL, T. (2005): "The work of economics: how a discipline makes its world," *European Journal of Sociology*, 6(2), 297–320.