Randomized Program Evaluation: A Microfinance Experiment in Ghana

Kampala RPC Workshop, Day 2

January 29, 2008

- Introduction
 - Motivation & Questions
 - Program Background
- 2 Experimental Design
 - Treatment & Control
 - Survey Data
- Incidence
- 4 Impact
 - Treatment Effects...
 - ... on Income Generation
 - ...on Nutrition
 - Conclusions

Motivation

Policy motivation:

Donors are pouring large sums into microfinance; We should stop to ask what it's accomplishing.

- Globally: More than US\$ 1 billion is committed annually to microfinance programs (CGAP 2005)
- Ghana: Sept. 2006 President Kufuor inaugurated a new US\$ 50 million Micro-Credit and Small Loans Scheme which will make loans of between US\$ 100 and US\$2,000 with zero collateral requirements.

Questions

Incidence Who wants credit/who gets it?

Impact What is the causal impact of program

participation on business profits, food security

and, ultimately, child height/weight?

Investment vs. Credit may serve a variety of functions.

Insurance What does microfinance finance?

The 'Credit with Education' Program (CWE)

Run & financed by a partnership between two organizations:

- Freedom from Hunger. U.S. based NGO provides technical assistance, and helps secure subsidized finance from donors (UNICEF, etc.).
- Lower Pra Rural Bank. Staffs and implements the project, retains all profits.

Two-pronged intervention, targeted exclusively at women but no other means testing/minimum requirements dictated by the project.

- Credit. Small loans (up to roughly \$300) intended to finance income-generating activities.
- Education. Curriculum focuses on three areas: health and nutrition, business skills, and management of the Credit Association itself. Roughly 1 hr per week, during CA meetings.

Anthropometrics & Welfare

Two anthropometric measures employed here:

Wasting = low weight-for-height, a.k.a acute malnutrition, as it generally reflects short term calorie depravation

Stunting = low height-for-age, a.k.a chronic malnutrition, due to a deficiency of micronutrients (often not found in inexpensive staples).

The Experimental Design

Village level randomization

- 11 program villages eligible for treatment from 1993 '96.
- 6 control villages eligible only after 1996.
- Stratified by size & distance from main road (4 cells)
- All women in treatment villages invited to join program. 23% accepted.

Departures from pure randomization:

- In four villages, ex ante political considerations guided assignment.
- In one randomly assigned treatment village, there was insufficient demand to open a Credit Association. Whole stratification dropped (bringing total from 19 to 17).

Due to interest in child nutrition, survey sampled **exclusively mothers** with infants.

Baseline Survey, August 1993

- Conducted before program was launched, spanning program & control villages.
- Random sample of women with children 12 24 months (extended to 36 in follow-up).
- 308 respondents = average of 18.1 per village.
- Follow-up information on whether individuals joined the program.

Follow-up Survey, August 1996

- 306 respondents **not a panel of individuals**.
- Deliberate over-sampling of participants.

Table: Sample Size by Community

	Sample of Mothers				Population
	19	93	19	96	of Clients
	Future	Non-		Non-	in 1996
	Clients	Clients	Clients	Clients	(Mothers/Non)
Program Communities					
Aboso	4	6	7	8	35
Anto	10	21	17	17	51
Assorku	3	26	8	10	60
Atwereboanda	3	7	1	7	30
Beposo	9	20	10	9	28
Essaman	5	25	4	8	32
Nyankrom	0	10	2	7	25
Obinyim Okyena	3	7	7	10	28
Old Daboase Junction	3	7	7	8	27
Shama Junction	6	24	20	19	93
Yabiw	2	8	7	9	34
Sub-Total	48	161	90	112	443

Table: Sample Size by Community

	Sample of Mothers				Population	
	19	93	19	96	of Clients	
	Future	Non-		Non-	in 1996	
	Clients	Clients	Clients	Clients	(Mothers/Non)	
Control Communities						
Asem Asa		10		10		
Bokokope		9		10		
Daboase		30		33		
Kobino Ano Krom		10		11		
Kumase		30		30		
Nkwantakese		10		10		
Sub-Total		99		104		
Grand Total, 614		260		216		

Survey Data

 $\label{eq:Nutrition} Nutrition \left\{ \begin{array}{ll} \text{Anthropometrics:} & \text{HAZ and WHZ scores} \\ \text{'Lean' months} & \text{Months in which household had} \\ & \text{difficulty finding enough food.} \\ \text{Food expenditure:} & \text{NB: expenditure not consumption.} \end{array} \right.$

Table: Baseline Summary Statistics, 1993

	Control Villages (1)	Program Villages (2)	Testing Randomization (3)
HAZ	966	-1.270	304
	(1.147)	(1.173)	(.139)**
WHZ	927	703	.224
	(1.031)	(1.138)	(.130)*
'Lean' Months	1.821	1.912	.090
	(2.296)	(2.514)	(.309)
Food Expenditure	12164.3	11323.3	-841.0
	(7991.3)	(8421.0)	(1098.7)
Profit	7322.7	6391.4	-931.2
	(29151.8)	(10205.6)	(1264.5)
Net Income	8341.2	6195.4	-2145.8
	(45807.4)	(12156.4)	(1684.5)
Capital	32621.0	21952.7	-10668.3
	(76862.3)	(42467.8)	(9070.0)

All monetary values are in real 1995 Ghanaian Cedis.

Incidence

(a.k.a., Who Gets Credit?)

Table: Loan Take-Up

	Probit for	Participation	Regression	of Loan Size
	(1)	(2)	(3)	(4)
Palm Oil	514 (.341)	883 (.411)**	067 (.168)	064 (.174)
Bakery/Prepared Food	(.217)***	.453 (.250)*	.073 (.134)	.047 (.143)
Smoked Fish	.859 (.307)***	1.003 (.329)***	(.189)	.120 (.192)
Profits		00002 (.00004)		
Profits ²		3.71e-11 (1.04e-09)		
Capital		.00002 (9.96e-06)**		
Capital ²		-1.01e-10 (5.49e-11)*		
Own Land Dummy		278 (.231)		024 (.159)
Age		.037 (.016)**		.006 (.010)
Schooling		.049 (.027)*		.017 (.015)
Obs.	200	200	83	83

Table: Probits for Selection on Outcome Measures

Nutrition Outcom	nes	Business Outo	Business Outcomes		
HAZ	.033 (.082)	Log Net Income	.259 (.141)*		
WHZ	.139 (.084)*	Log Profit	.214 (.137)		
Log Food Exp.	.043 (.169)	Log Capital	.174 (.108)		
Log Meat Exp.	.061 (.136)	Net Income	7.14e-06 (7.52e-06)		
'Lean' Months	.032 (.038)	Profit	1.00e-05 (8.88e-06)		
Breast Feeding Dummy	.078 (.213)	Capital	2.80e-06 (2.09e-06)		
Diarrhea Knowledge	.508 (.317)				

Each coefficient corresponds to a separate equation.

Introduction Experimental Design Incidence Impact Treatment Effects...
... on Income Generation
... on Nutrition
Conclusions

Impacts

Treatment Effects

Let Y_i^T be the 'potential outcome' for individual i if treated, and Y_i^C otherwise. Our goal is to compute the causal impact of treatment T on the outcome Y.

$$\beta_i = Y_i^T - Y_i^C$$

Or more realistically, the average treatment effect for some subset of the population, $E[\beta_i|T]$. The problem of selection bias is that

$$E[\beta_i|T] = E[Y^T|T] - E[Y^C|C]$$
iff
$$E[Y_i^C|T] = E[Y_i^C|C].$$

Suggestion Designs & Partial Compliance

Partial compliance:

- Assignment to the treatment group does not guarantee treatment.
- Nor, in principle, does random assignment to the control group guarantee non-participation.

Suggestion Designs:

- Treatment group is invited or encouraged to participate.
- In our case, the vast majority of women in program communities opted not to participate in the program.
- Presumption that participation is (positively) correlated with the treatment effect.

Intention-to-Treat Effect (ITT)

The ITT is computed as the mean difference between program and control communities:

I.T.T. =
$$E[Y_i|Z=1] - E[Y_i|Z=0]$$

 $\neq E[\beta_i|T]$

- Measures the average, causal effect of the program on all eligible women.
- Note, this is distinct from the Average Treatment Effect (ATE).
- Often particularly relevant for policy analysis.

Local Average Treatment Effect (LATE)

Suppose we're willing to assume that there are no externalities in the program.

- Then, the ITT must be driven entirely by the participants.
- Thus the effect of treatment on the treated is computed as the ratio of the ITT to the proportion of treated individuals in the treatment group.

$$LATE = E[\beta_i | T] = \frac{E[Y_i | Z = 1] - E[Y_i | Z = 0]}{E[T_i | Z = 1] - E[T_i | Z = 0]}$$

• Wald estimator, equivalent to the **instrumental variables** estimate of β , using the randomization as the instrument.

Econometric Specification

To compute the ITT, we can estimate the following equation

$$Y_{ijt} = \alpha Z_{jt} + \mu_j + \nu_{jt} + \epsilon_{ijt}$$

Even if randomization was imperfect:

$$\mathrm{E}[Z_{jt}\mu_j] \neq 0$$
 but we can include village FEs $\mathrm{E}[Z_{jt}\nu_{jt}] \neq 0$ this is a problem $\mathrm{E}[Z_{jt}\epsilon_{ijt}] = 0$ as Z doesn't vary within j

Econometric Specification

To estimate the LATE, consider the following econometric model

$$Y_{ijt} = \beta_T T_{ijt} + \beta_X X_{1ijt} + \mu_j + \nu_{jt} + \eta_{ijt}$$

$$T_{ijt} = \gamma_Z Z_{jt} + \gamma_X X_{2ijt} + \delta_{ijt}$$

where, even allowing that $X_2 \subseteq X_1$, Z serves as a valid instrument for treatment.

Note however that we cannot exploit within-village variation in T:

- Use binary Z to instrument for binary T as well as loan size.
- Use introduction of program in village j as instrument for duration of treatment.

Table: Reduced-Form Impact on Income-Generating Activities

		\hat{eta}_T^{OLS}	\hat{eta}_Z^{OLS}	$\hat{eta}_T^{\prime V}$
		(Naive)	(ITT)	(LATE)
		(1)	(2)	(3)
Log Net Income	N=374	.295 (.179)*	.428 (.110)***	1.116 (.291)***
Log Profit	N=393	.531 (.179)***	.352 (.161)**	.934 (.419)**
Log Capital	N=352	.247 (.213)	.147 (.233)	.366 (.580)
Net Income	N=596	23444.570 (7732.627)***	5700.105 (4105.434)	24693.700 (16680.380)
Profit	N=609	23079.200 (5239.549)***	6145.467 (4432.011)	26695.750 (17941.180)
Capital	N=607	17792.370 (5572.376)***	11136.150 (10544.560)	49662.910 (45790.750)

Table: Reduced-Form Impact on Income-Generating Activities

		\hat{eta}_T^{OLS}	\hat{eta}_Z^{OLS}	$\hat{eta}_T^{\prime V}$
		(Naive)	(ITT)	(LATE)
		(1)	(2)	(3)
Log Net Income	N=374	.295 (.179)*	.428 (.110)***	1.116 (.291)***
Log Profit	N=393	.531 (.179)***	.352 (.161)**	.934 (.419)**
Log Capital	N=352	.247 (.213)	.147 (.233)	.366 (.580)
Net Income	N=596	23444.570 (7732.627)***	5700.105 (4105.434)	24693.700 (16680.380)
Profit	N=609	23079.200 (5239.549)***	6145.467 (4432.011)	26695.750 (17941.180)
Capital	N=607	17792.370 (5572.376)***	11136.150 (10544.560)	49662.910 (45790.750)

Table: Reduced-Form Impact on Income-Generating Activities

		\hat{eta}_T^{OLS}	\hat{eta}_Z^{OLS}	$\hat{eta}_T^{\prime V}$
		(Naive)	(ITT)	(LATE)
		(1)	(2)	(3)
Log Net Income	N=374	.295 (.179)*	.428 (.110)***	1.116 (.291)***
Log Profit	N=393	.531 (.179)***	.352 (.161)**	.934 (.419)**
Log Capital	N=352	.247 (.213)	.147 (.233)	.366 (.580)
Net Income	N=596	23444.570 (7732.627)***	5700.105 (4105.434)	24693.700 (16680.380)
Profit	N=609	23079.200 (5239.549)***	6145.467 (4432.011)	26695.750 (17941.180)
Capital	N=607	17792.370 (5572.376)***	11136.150 (10544.560)	49662.910 (45790.750)

In 1996, average loan size was 76,245 Cedis (\approx \$50) at 48% annual interest. This would imply a monthly loan payment of approximately 22,111 Cedis (\approx \$16).

	Log Net	Log	Abs.	Abs.
	Income	Profits	Net Income.	Profits
$\hat{\pi}^T$	72,647	48,001	52,070	45,541
$\hat{\pi}^{C}$	23,808	18,867	27,376	18,845
$(\hat{\pi}^{T} - \hat{\pi}^{C})/ar{L}$	64.1%	38.2%	32.4%	35.0%
$(\hat{\pi}^T - \hat{\pi}^C - P)/\bar{L}$	35.1%	9.2%	3.4%	6.0%

Table: Reduced-Form Impact on Nutrition Related Outcomes

		$\frac{\hat{\beta}_T^{OLS}}{\text{(Naive)}}$	$ \begin{array}{c} \hat{\beta}_{Z}^{OLS} \\ \text{(ITT)} \\ \text{(2)} \end{array} $	$\frac{\hat{\beta}_T^{IV}}{\text{(LATE)}}$
HAZ	N=605	.321 (.158)**	.082 (.189)	.358 (.816)
WHZ	N=605	.097 (.140)	195 (.185)	847 (.818)
Log Food Exp.	N=595	163 (.075)**	.109 (.075)	.458 (.323)
Log Meat Exp.	N=576	.051 (.079)	.093 (.178)	.421 (.808)
'Lean' Months	N=601	763 (.250)***	538 (.300)*	-2.325 (1.342)*
Breast Feeding Dummy	N=614	010 (.053)	.064 (.084)	.280 (.367)
Diarrhea Knowledge	N=614	.257 (.048)***	.113 (.034)***	.493 (.139)***

Table: Reduced-Form Impact on Nutrition Related Outcomes

		$\frac{\hat{\beta}_T^{OLS}}{\text{(Naive)}}$	$ \begin{array}{c} \hat{\beta}_{Z}^{OLS} \\ \text{(ITT)} \\ \text{(2)} \end{array} $	$\frac{\hat{\beta}_T^{IV}}{\text{(LATE)}}$
HAZ	N=605	.321 (.158)**	.082 (.189)	.358 (.816)
WHZ	N=605	.097 (.140)	195 (.185)	847 (.818)
Log Food Exp.	N=595	163 (.075)**	.109 (.075)	.458 (.323)
Log Meat Exp.	N=576	.051 (.079)	.093 (.178)	.421 (.808)
'Lean' Months	N=601	763 (.250)***	538 (.300)*	-2.325 (1.342)*
Breast Feeding Dummy	N=614	010 (.053)	.064 (.084)	.280 (.367)
Diarrhea Knowledge	N=614	.257 (.048)***	.113 (.034)***	.493 (.139)***

Table: Reduced-Form Impact on Nutrition Related Outcomes

		\hat{eta}_T^{OLS}	$\hat{\beta}_{z}^{OLS}$	\hat{eta}_{T}^{IV}
		(Naive)	(IŤT)	(LATE)
		(1)	(2)	(3)
HAZ	N=605	.321 (.158)**	.082 (.189)	.358 (.816)
WHZ	N=605	.097 (.140)	195 (.185)	847 (.818)
Log Food Exp.	N=595	163 (.075)**	.109 (.075)	.458 (.323)
Log Meat Exp.	N=576	.051 (.079)	.093 (.178)	.421 (.808)
'Lean' Months	N=601	763 (.250)***	538 (.300)*	-2.325 (1.342)*
Breast Feeding Dummy	N=614	010 (.053)	.064 (.084)	.280 (.367)
Diarrhea Knowledge	N=614	.257 (.048)***	.113 (.034)***	.493 (.139)***

Treatment Effects...
...on Income Generation
...on Nutrition
Conclusions

Conclusions

Conclusions

Incidence

- 'Positive' selection into the program
- Age, schooling, education, income, capital all increase probability of participation

Impact

- Glass half full: positive effects on HAZ no significant evidence these are driven by selection.
- Glass half empty: after controlling for selection, no significant HAZ impacts.

Investment vs. Insurance

- Impacts on profits are quite large, although may not reflect consumption changes if borrowers substitute away from farming.
- Impacts on 'hungry season' and height consistent with, though hardly proof of, improved ability to smooth.

